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Motivation

Questions:

* How can we check the plausibility of DNN-based perception functions?

Requirements:
» Post-Hoc (Model-Agnostic)
* Operation-Time (Small & Cheap)

* Human-Interpretable

* Robust (In particular, domain invariant)

EU Al ACT:
* Under Title VIII ,,Post-Market Monitoring® for high-risk Al
« Post-market monitoring requires error (incident) monitoring functionality. For this, one has to identify
incidents (implausible behavior) during operation.
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Concept-Bottleneck Models

X -> model - >y

concepts ¢

) | wing color
undertail color task y
CNN | | Classifier { _ _ l (Koh, Concept Bottleneck
bird species

: Networks, 2020)
beak length

* Challenges:
* Requires densely-labeled datasets

* In Literature:
» Significant and extensively studied
*  Belem, Weekly Supervised Multi-Task Learning for Concept-Based Explainability, ICLR, 2021
* Bento, ConceptDistil: Model Agnostic Distillation of Concept Explanations, ICLR, 2022
* Sawada, Concept Bottleneck Model With Additional Unsupervised Concepts, IEEEAccess, 2022
*  Yuksekgonul, Poikarinen, Label-Free Concept Bottleneck Models, ICLR, 2023
*  Post-Hoc Concept Bottleneck Models, ICLR, 2023
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Concept-Bottleneck Models

* Our Solution:
* Transfer Learning

(Broden, ECCV 18)

* Challenge:
* How can it perform well in diverse scenarios?

(a) Texture image (b) Content image (¢) Texture-shape cue conflict
814% Indian elephant TL1% tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 264% indri
GIF courtesy of Waymo Open Dataset* 82% black swan 33% Siamese cat 96% black swan

Kl Wissen Final Event | Interpretable Model-Agnostic Plausibility Verification for 2D Object Detectors 4



Robust, Generalizable Representations
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Lengyel et. Al., Zero-Shot Day- Night Domain Adaptation with a Physics Prior, ICCV, 2021
Geirhos et. Al., ImageNet-Trained CNNs are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness, ICLR, 2019
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Learning Robust Concept Representations
CBM
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Corruptions | CBM  CIConv-CBM | CBM  CIConv-CBM
Clean 89.3% 87.4% 91.4% 90.3%
Brightness 33.88% 85.69% 64.92% 88.77 %
Contrast 33.03% 85.60% 52.17% 87.46%
Fog 34.62% 84.74% 69.38% 87.30%
Frost 34.9% 74.84% 69.50% 80.12%
Gaussian Blur | 35.16% 75.19% 70.04% 81.73%
Compression | 35.06% 83.84% 69.74% 87.55%
Saturate 3491% 85.65 % 68.89% 89.27 %
. ! P 2 & . ua 5 it Shot Noise 34.27% 65.53% 42.13% 74.55%
X cn i : i Rl : Snow 35.27% 65.37% 68.33% 77.90%

- v

Table 3. Object class prediction accuracy comparison between
vanilla CBM and CBM with CIConv layer on Broden test data
with applied corruptions (severity=3). Bold numbers highlight the
Perturbed Test Dataset of Broden best prediction performance for each class and corruption type.
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FPs Monitoring with Color-Invariant CBMs
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FPs Monitoring with Color-Invariant CBMs

Data, Model Task loU Precision Recall
KITTI, SDet Car 0.7 0.96 0.07
KITTI, SDet  (F) Car 0.7 0.81 0.56
KITTI, SDet Ped 0.5 0.83 0.01
KITTI, SDet  (F) Ped 0.5 0.72 0.95

Table 4. Comparison of fine-tuning (FT) and zero-shot false posi-
tive monitoring for SqueezeDet (SDet) on KITTI easy
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Keser, Mert, et al. "Interpretable Model-Agnostic Plausibility Verification for 2D Object Detectors Using Domain-Invariant Concept
Bottleneck Models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. Localization Error
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Conclusion & Future Work

* We proposed a novel method for model-agnostic, robust, flexible, and human interpretable operation-
time plausibilisation of object detector detections.

Exploring the potential of this monitoring approach in identifying and addressing other types of object
detection errors, particularly focusing on false negatives.
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Questions
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